第6回委員会の指摘事項とその対応について

	質問および意見	質問に対する対応
番号	(1)第5回委員会での指摘事項への対応報告	
1	府馬の実測沈下量整理図では、切土部と盛土部を表示 し、両部の沈下量を示したほうが正確性が増すと思われ る。(古関副委員長)	ご指摘の通り対応した。(事務局) → 資料-3
2	別冊資料-1について、液状化強度試験各試料の最大 間隙比、最小間隙比、試験における供試体圧密後の体積 収縮量を追加で示して欲しい。(石原委員長)	ご指摘の通り対応した。(事務局) → <mark>別冊資料-1</mark>
	(2)液状化の検証結果(補足)	
3	簡易法と地震応答解析の結果を比べると、応答解析の 結果では実測沈下量のほうが大きい傾向にある。対策検 討の場面で応答解析の手法を用いるため、応答解析につ いて以下の4項目を確認して欲しい。1. 府馬の入力地 震動、2. 余震を考慮した沈下量、3. 細粒分の多い地 層も液状化判定対象とした場合の検討、4. 別の解析方 法。(石原委員長、古関副委員長、中井委員)	ご指摘の通り対応した。(事務局) → 資料-5
4	別冊資料-2について、地震応答解析の加速度分布図 では地表付近で加速度が急に上昇するものと緩やかに上 昇するものとがあるが、それぞれについて計算に用いた モデルを示して欲しい。(石原委員長)	ご指摘の通り対応した。(事務局) → 資料-3

表-3.1 第6回委員会の指摘事項とその対応一覧表

	(3) 再液状化の検討結果	
5	3~4 地点について、細粒分の多い地層も液状化判定対象とした場合の比較計算結果を示して欲しい。(石原委員長)	ご指摘の通り対応した。(事務局) → 資料-6
	(4)液状化対策工法の検討結果	
6	佐原市街地地区は地下水位低下工法を実施した場合、 下川岸は大きな圧密沈下量が生じると予測される。また、 水郷大橋町においても圧密沈下による建物への影響が生 じると予想され、この地区一帯の対策工法として格子状 地中壁工法を採用する。(香取市、石原委員長)	了解した。(事務局)
7	水郷大橋町の検討結果では、無対策時の沈下量が小さ いため、計算条件を再度見直して検討結果を示して欲し い。(石原委員長)	ご指摘の通り対応した。(事務局) → 資料-7
8	小見川市街地地区の対策方法については、圧密沈下の 懸念があるものの地下水位低下工法の適用可能性が残さ れている。これについて議論するため、宅地地盤の高低 差(約 1m)を考慮したモデルの地下水位低下後の地盤 の傾斜量を計算して欲しい。(古関副委員長、松下委員)	ご指摘の通り対応した。(事務局) 一 資料-3
9	道路のみの対策を実施した場合の検討結果をみると、 対策効果が大きすぎると思われる。もう少し検討を加え て欲しい。	ご指摘の通り対応した。(事務局) 一 資料-7

以上

資料-3 第6回委員会の指摘事項とその対応について ①」の回答資料

府馬地区測量結果に基づく実測沈下量の推定

実施日: 2013年9月 **実施箇所**下図に示す **測量結果**下図に示す

以上の測量結果から、

地震 2011.3.11)による府馬地区の実測沈下量 : <u>3~20 cm程度</u>

と推定する。

なお、上図には右の切盛境界参考図を元に切盛境界線を示した。

これにより、おおくすニュータウンの市道に発生した沈下は、

主に盛土区域で確認されるが、切土区域でも発生したことがわかる。

代表地盤モデルによる地震応答結果について

ー次元応答解析の結果、佐原地区と小見川地区での地震応答結果に差異があった(小見川地区では深度 が浅くなるにつれて加速度応答が一様に増加しているのに対し、佐原地区では GL-5.0m 付近から急激に 加速度応答が増加している)。

ここでは、両地区の地盤を簡略化したモデルで比較を行った。

1. 検討条件

(1) 地盤モデル

比較のために、以下の簡略化した地盤モデルを設定した。

(2) 地盤特性·地盤物性値

モデル地盤の特性として、以下のとおり、地盤物性値を設定した。

	単位体積重量 (kN /m ³)	S波速度(m/s)	動的変形特性	備考
As層	18.0	150	曲線a	As1、As2層は、As層を
As1層	18.0	100	曲線a	Ac層により分けたもので、基本的には3層とも
As2層	18.0	150	曲線a	同一層と仮定する。
Ac層	16.0	100	曲線b	

(3)入力地震動

入力地震動は、佐原観測波、小見川観測波をそれぞれ基盤に引き戻した波形を用いた。

2. 解析結果

(1) 佐原観測波による応答解析結果 (SHAKE)

最大応答値深度分布

^{case1} KNET_SAW-EW_2E (モデル①)

case1								
地	深	絶対加速度	絶対 速度	相対変位	せん 断応 力	せん断ひずみ	せん断波速度	滅衰定数
層							初期値	初期値
番	度	(GAL)	(cm/sec)	(cm)	(kN/m ²)	(%)	(m/sec)	(%)
5	(m)	0 200 400	0 20 40	0.0 2.0 4.0	0 20 40	0.00 0.10 0.20	0 200 400	0 10 20
地表	0.0	171	23. 7	1.5				
1	1.00	I I I 169	I I I I _{23.7} 1	I I I I 1.5	I I I I 1.6I	I I I I0. 00I	I I I I146 I	1 1 1 11.81
2	2.00	159	23.6	1.5	4.7	0. 01	137	2.9
3	3.00	i i <mark>/</mark> i i ₁₄₄ i	I I I I23.6	1 I I I _{1.5}	1 1 1 7.6	I I I I0.02	I I I I129 I	1 1 15.11
4	4.00	125	23.6	1.5	10. 2	0.04	123	6.8
5	5.00	1 1 1 114	1 1 1 l _{23.5}	1 1 1 1,4	I I I12.4	I I I0.05	I I I 119 I	1 1 17.91
6	6.00		1 1 123.4		14.2	0.06	115	8.8
7	7.00	1 114	23. 1	1 1 1.4	1 1 15.6	1 1 1 0.07	1 1 113	1 1 9.41
8	8 00				1 1 1 16.5	0.07	111	9.7
9	9.00				17. d	1 1 10.08	1 110	1 1 <u>19.9</u> 1
10	10.00				1 1 17.8	1 1 10.08	1 1 1091	10.21
11	11.00				18.6	0.09	107	0.5
12	12 00		1 1 23 3	1 1 10	119.8	1 1 10.10	1 11051	1 1 1 10.91
13	13 00				21. 1	0.11	103	
14	14 00				1 1 122.2	1 1 1 10.12	I I 102 I	1 1 11.71
15	15 00				22.8	0.12	101	2.0
16	16 00		1 1 23 7		123.3	0.13	i i 1 ₁₀₀ i	1 1 12.21
17	17.00				23.8	0.13	99	
19	18.00				23 4	0 13	i i i ₉₉ i	
10	10.00							
19	13.00				1 1 23.0		₀₇	
20	20.00	日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	▲ 1 0.0 ● 未確= 1.5	日本価= 24.8			日本は二日12.0 日本は二日12.0
<u></u>			20.0	ACCE 1.0	AC/12 24.0	AC/14	ACA 140	AC / 12.0

最大応答値深度分布

^{case2} KNET_SAW-EW_2E (モデル②)

地層	深	絶対加速度	絶対速度	相対変位	せん断応力	せん断ひずみ	せん断波速度 ——初期値 ——初期値	減衰定数 ——初期値 ——
番	度	(GAL)	(cm/sec)	(cm)	(kN/m^2)	(%)	(n/sec)	(5)
号	(m)	0 200 400	0 20 40	0 3 6	0 20 40	0.0 0.5 1.0	0 200 400	0 10 20
包表	0.0	146	28. 4	3.4				
1	1.00	1 1 142	III 128.4	1 1 1 13.4	1 1 1 1.3	I I I0.01	1 1 941	1 1 1 12.51
2	2.00	127	28.3	3.4	3.9	0. 03	84	6.0
3	3.00	1 108	28.3	3.4	6.2	I I I I0.06I	1 1 1771	I I I 18.71
4	4.00	110	28.4	3.3	8.0	0.08	72	0.5
5	5.00	1 16	28.3	3.2	1 9.3	1 1 10.11	1 681	1 1 11.51
6	6.00		1 1 1 128.4		10.1	0.13	70	8.3
7	7.00	1 1 1 1 1 1 1 1	28.4	3.0	է] է հեվ	1 0.15	1 68]]! !8.8!
8	8.00				1 1 12.4	0.18	65	9.7
9	9.00	119	27. 9	2.7	13. 3	0. 20	63	0.2
10	10.00	1 1 1 1120	127.6	1 1 1 12.5	1 1 14.0	0.23	1 621	10.7
1	11.00	130	26.9	2.2	14.7	0. 25	60	1 1 1 10
12	12.00	i i i i 130	1 1 126.2	i i 1 i 2.0	i i]i i15.8i	i i i i0.29i	1 1 1 581	1 1 1 11.7
13	13.00	122	25. 2		16.8	0.34	55	2.4
4	14.00	1 1 137	24.2	1.2	1 1 118.5	1 1 10.44	1 511	1 1 13.4
5	15.00	172	23. 2	0.7	20.0	0. 56	47	4.3
6	16.00	1 164	22.8	0.6	21.2	1 1 10.11	1 103	1 1.4
17	17.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 122.4	1 1 1 10.4	22. 6	0.12	101	1 1.9
18	18.00	<mark> </mark> 143	21.8	0.3	24. 2	0.14	1 98	1 2.4
9	19.00	1 1 1 1148	1 1 121.5	1 1 10.2	25.2	1 1 10.15	961	1 12.8
10	20.00		20.7		26.3	0.16	95	3.0
儲	11111	最大值= 172	最大值= 28.4	♣★値= 3.4	景大師二 26.3	最大值= 0.56	最大值= 103	最大值 = 14

地層	深	絶対加	〕速度	絶対	速度	相	対変位	せん断	応力	せん器	新ひずみ	ť	ん断波) 一初期	速度 直	滅衰	定数 初期値
番	度	(GA	D	(cm/	(sec)	(cm)	(kN/	²)		(%)			1)	0	収束値
뮥	(m)	0 20	0 400	0 2	0 40	0.0	2.0 4.0	0 20	40	0.00 0.	. 20 0. 40	0	200	400	0 1	ý 2
地表	0.0	li i d	186	 	23. 9		1.6		ii	li i			i	i i		
1	1.00	1 I I I	I 177	1 I -	l 123. 8	1 1	I I 1.6	1 1 1	11.71	1 1	I IO. 01I	1	1	1 93 1	1 1 1	12.71
2	2.00	1::: <mark>/</mark> :	1 148		123 8	! ! [¶]	1 1 1	11 1	5.1	:"	0.04	11		80		7.4
3	3.00	1: : <mark>/</mark> :	1 1 25	i i –	1 23 7	li i¶		i ji i	7,8	; `	1 10.08	li (- i -	1 72	1115	10.21
4	4.00	11 11 1	120	1 1		1 ! ! 		141	9.6	195	0,12	1	1	71		7.9
-	5.00	1: 1	1 1 20		1 120. M		1 1.0		10.5	11 5	1 10 13			69	11 11	18.51
5	5.00	∣i i∳i	139	i i	23. 3	∣i i∳	1 1.4	li h i		╎╷┍┿┛╴		i U	ni.	1 1	[월 : 월]	. I_ I
6	6.00	<u> ! !</u> ↓!	144	1.1	23. 3	1 1	1.4	1. 1. 1	11.4		1 10.04		11	121	! !	1.2
7	7.00		142		23. 3		1.3	1111	12. 4	lili -	0.05	11		119	li iti	7.9
8	8.00	li ili	I 145	i i	123.4	i i	I I 1.3	i i i	13. 9	li li -	j j0.06j	i i	li i	116	i i j	8.6
9	9.00]: : <mark>"</mark> :	144		23. 4		1.2	11 11	15.5	<u> </u>	0.07			113		9.3
10	10.00	1: : <mark>/</mark> :	134	i i	123.5	li 🎁	1 11.1	1 1	17. Q	-	10.08	li i	i i	1110		19.9
11	11.00	!!!!	1 1	1.1		! f		1 1	18.6	111	0.09	1 1	1	107		0.5
12	12.00	1: 11	115		20. 9 23. al			111	120, 11		1 10, 10			1105		11.01
12	12.00	1 6 1	112	1.1		1 🛉		1.1.1	20 9		1 6 11	1.1	1	103	1 1 1	114
10	13.00	1: 👌 :	120		20. 9 	9	1 10.8		~~··) 21 gl		I [****]			1102		11.7
14	14.00	ti ili	140	i i -	23.6	i 🛉	1 1 1	li i i	1.0	li i		i	Ti -	1	li i i	
15	15.00	↓! ! <mark></mark> ↓!	150	1.1	23.5	! ↓ ! _	1 10.7		22.3		1 10.12	!	11	1101		11.8
16	16.00		144		23. 2		0.6		22.7	¦	0.12			100		12.0
17	17.00	li ili	I 138	i i	123. 2	li∫i	1 10.4	i i i	23.6	li il	0.13	i	li.	99	li i i	12.2
18	18.00	: : <mark>!</mark> :	129		23. 1	I	0.3		24. 8		0.14			97		2.6
19	19.00	1: 1	133	i i -	123. 2	i <mark>ĭ</mark> i	1 0.2	111	25.4	11 11	0.15	li j		96	li i i	12.8
	20.00	י 🕆 ו ו		1.1		f i		1 1 1	125 6	1 1	1 10 15		1	1 ₉₆ 1		12 9

最大応答値深度分布

(2) 佐原観測波による応答解析結果 (FDEL)

最大応答値深度分布図 (モデル①)

.

. .

最大応答値深度分布図 (モデル③) ケース

深度(1))

最大応答値深度分布図 (モデル②) ケース

(3) 佐原観測波による応答解析結果 (FLIP)

最大応答値深度分布図(モデル①)

最大応答値深度分布図 (モデル③) ケース

最大応答値深度分布図 (モデル②) ケース

.

3-6

(4)小見川観測波による応答解析結果(SHAKE)

EW_	2E																	
地層素	深度	絶対加速	態度	絶:	村速度	相対	変位	せん	新応力 .2.	1	さん断ひう	ľみ		せん断波初期	速度 値	1	或衰定数 ——初期 ——収束	t I値
号	(m)	(GAL) 0 100	200	(cn	20 40	0.0 2.	m) 0 4.0	0 (kN	/m) 0 40	0.00	0. 20	0.40	.0	(m/ sec 200	400	.0	(%) 10	. 2
包表	0.0		98		24. 9		1.6			Li			i	1 1	1 1		i	ii
1	1.00	1.1	I 981	1 1	I I24. gl	11	I 1.6		1 0.91		11	10. 001	1	I I	1148 1	1 1	1	11.31
2	2.00	1: : I	97		1 24. 9		1.6	11	2.7	11		0. 01			143	111	-	2.3
3	3.00	1 i î 📍	 I 97	li i	I I24. 8	i i¶i	1.6	ו ון	1 4.51		i i	10. 01	li -	i i i	1138	l i [] i	i i	12.81
4	4.00	1::1	97		24.7	:	1.6	:): :	6.3	1.1		0. 02		: 	133	\		4.0
5	5.00	i i †	 	li i	1 1 ₂₄ el	: :†:	1.5		8.1	11	i i	10.03	li -	ili i	1128	114	i -	15.41
6	6.00	11 1 1	1 1			!! !	1 1	1:1:	9.8	1.5		0.03	1	<u> 11</u>	124	ן זו	1	6.5
7	7.00		1 94	i i	1 124.4		11.5	: ነ;	111. 6	111	i i	0.04	i.	i i	1121	ከ ''	l'	17.4
	8.00	1	1 1			! ! † !	1.1.4	1: 5:	13. 2	111		0.05	1	<u> </u>	1117	1 1	ነ! -	1 1
°	0.00	1119	1 301	i i	1 120. 31		1.4	: :\;	114, 9	111	i i	0.06	i.	i i i	1114	i i	۲i –	19.01
3	9.00	1 ! ! ! !	1 00		10 120.0	! ! • !	1.3	! !\!	1 1	1:5		0.03	1	11	1 1	1 1	4	1 1
10	11.00	i i ei	1 801	i i	1 123. 2		11.3	: : \;	117 d	111	i i	0.08	i.	i i i	I ₁₀₉ I	i i		10.2
10	10.00	· • .	1 001		10 122.9	! 🛉 !	1.2	! ! !	1 1	1: 1		0.09	1	111	106	1 1	5	10 7
12	12.00		1 301	i i				: : {	120 d	¦		0.10	i.	111	1 ₁₀₄ I	i i	η.	41 2
10	13. 00	┨ <u>╎</u> ╎ ┥╎	1 /9		^{21.} /	! 🛉 !	1.0	: : :	121.7	11	5	1°11	1	111	103		- 11	11.5
14	14. 00	ti iti		i i	1 121. II	🛉	10.9	: : :	1 ₂₂ d	Hi -	η (0.17	i.	111	I 101		- 14	4 0
15	15. 00	{!!! <mark></mark>	1 76	1 1	^{20.5}		10.8	! ! !	124.0	1:	51	1 ¹⁴ 12	1	111	1 1 1		-11	12.21
10	16. 00		1 1		19.7	¦∳¦ ¦	0.6	: : :	124. U	H -	11	10.101 	i.	111	1 391			14.21
17	17.00	{!!! <mark></mark> ∳!	1 78		^{18.} 9	! ∳ ! !	0.5		120. 1	11	<u> </u>	1 ^{0.14}	1	11	1 30 1	11 1	-!{	12.01
18	18.00		79		' '18.5	4	0.3		126.0	H-	11	10.151 L.J.			1 961			12.81
19	19.00	<u> ! ! </u> !	79	! ! .	18. G	∳!!	0.2		126. 7	1.	! !! -	0.16	1	11	1 95 1	1 1		13.0
20	20.00		77		18. 8		0.0		127. 3			10. 17			1941			13.11

最た case2 OMI-EW	大応答値 2E	፤深度分布 (モデル②)					
case2								
地展	深	絶対加速度	絶対 速度	相対変位	せん断応力	せん断ひずみ	せん断波速度 初期値	減衰定数 ——初期値
香	度	(641.)	(cm/sec)	(cm)	(kN/m ²)	(%)		
号	(m)	0 100 200	0 20 40	0 5 10	0 20 40	0.0 0.5 1.0	0 200 400	0 10 20
地表	0.0	126	29. 0	5.3				
1	1.00	I I I I 126	III <mark>1</mark> 28.gl	I I I I 5.3	1 1 1 1 1.21	I I I0.011	1 1 1 951	1 1 1 12.31
2	2.00	125	28. 8	5.3	3.5	0.03	86	5. 2
3	3.00		1 I I _{28.} d	1 1 1 5.2	i i i i 5.8i	1 1 10.05	1 1 1 781	1 1 18.21
4	4 00	122	1 1 1	5.2	8.0	0.08	72	0.3
5	5.00		1 1 1 1 1 1 1 1 1	1 1 1 5 0	1 110.2	1 1 10.13	1 1 671	1 1 12.11
6	6.00				1 1 12 3			9.6
2	0.00			1 4.9			1 1 61	10.7
-	7.00	I I I∳ I∷"I		1 1 9 1 ^{4.0} 1				III IS ÇÎ
8	8.00	1 1 1 106	1 1 1 124.9		^{10.} 9	^{0,29}		
9	9.00	99	23.4	i i∳i i ^{4.0}			1 1 1	1 1 1 1 1 1
10	10.00	95	1 1 1 121.8	1 1 1 1 3.61	1 1 18.2	1 1 10.44	1 1 1 501	13.5
11	11.00	91	21. 4	3.1	19. 2	0.53	47	14.2
12	12. 00	1 1 1 1 83	1 1 121.4	1 1 1 2.5	1 19.9	0.58	1 46	1 1 14.4
13	13.00	73	21. 3	1.9	20. 5	0.62	45	14.6
14	14.00	1 1 1 71	I I I 120. 9	1 1 1.2	20.8	0.64	i i i 44 i	1 1 4.61
15	15.00	74	20.3	0.6	20.9	0.66	44	4.7
16	16.00	1 1 1 74	1 120.1	1 1 10.5	1 1 121.5	1 1 10.11	1 102	1.7
17	17 00				21.5	0.11	101	1.8
18	18 00		10.9		1 121.6	1 1 10.11	1 1101	1 1 11.8
10	10.00			P 1 1 1				
13	10.00						1 1001	1 12 01
20 基份	20.00	/2 最大值= 126	最大值= 29.0		最大值 = 22.0	最大值= 0.66	最大值= 102	長大値 = 14.7
		North 120	10.0 L0.0		10071aa 12.0		102	11.1

地	深	絶対	0速度		絶対速度		相対変	位	ť	ん断応	л	ť	ん断ひ	ずみ	t	お前波の	東度	滅事	定数	
開業する	度	(G	<u>L)</u>		(cm/sec)		(cm)			(kN/m ²)			(%)			初期1 収束((m/sec)	直 〕	初期値 		
7	(m)	0 1	0 200	lî i	20 40	0.0	2.0	4.0	ů i	20	40	0.00	0. 20	0.40	0	200	400		0 20	
炮表	0.0		106		25. 7		- el	1.1	4		1 1	<u> </u>		1 1	1		1			
1	1.00		1105		125. 6		¦	1.7	1. 1		11.0	11. 1	÷	10.01			1961		1 12.11	
2	2.00	li i -	105	li i	i 25. 5	li i	i 🔓	1.7	il i	i.	2.9	l iL i	i.	0. 02	li	i i	i ⁸⁸ i	li L	4.2	
3	3.00	l!!.	103	11 1	25. 3		! !!	1.7	민	- !	1 4.8	1 ! L !	1	10.04	<u> </u>	1	1 81 1	1 1	17.01	
4	4.00		99	li i	25. 0	li i	i Ii	1.6	i li	÷	6.6	li i	÷	0.06			80		5.7	
5	5.00		I 94	1 1	I I24. 5	1 1	I T I -	I 1.5		1	8.21		1	IO. 09	1	1	I 75 I		I I6.9I	
6	6 00	1 :	1 921		1 124 3		ו <mark>יי</mark> ו	1 1	11	-	9.9	[0. 03			124	۱۲ <u>۱</u> ۲	6.5	
7	7.00	i i ¶	1 89	i i	1 1/24 1	i i	i†i	1 4	iξ	i i	111. 6	l i l i	- i -	10.04	li -	i i	1121 I	ի մի	1 17.41	
0	8.00	1 ! ! 🕈	1 1				! † !	1 1	1 1	-	13. 2	111		0.05		<u>' </u>	118	11 11	8.2	
0	0.00	ti i 🛉	اړه ا	li i		li i	i† i	1, 1	i i'	li.	14.8	l i fi	- i	10.06	i i		1114	11 1 1	I 18,91	
3	9.00	1 ! ! 🛉	1 °"I	1 1		1 1	! !	11	1.1	ነ!	16.3	1.1	1	0.07	1	!!!	I I	994	1 1 1	
10	10.00	{¦ ¦ ∳	1 81		1 123. 2		1	11.3	11	۲Ľ –	17.7	Li V	÷	0.00			1100		1 10.1	
	11.00	1	1 81	1 1	1 1 ^{22.8} 1	1.1	1	1.2	I = I	ų	1.1	1 4	1	1 1	1	1	109	1 1		
12	12.00	¦ ¦∳	1 81		122. 3			11.1		4	lia. d	1: 5		lo: nal			110/1		1 10.01	
13	13.00	ļi i↓	81	li i	21. 8	li 🖌	i i	1.0	i i	٦Ļ	20.3	li I	i.	'0. 10'	li -	l i -	105	i i	11.0	
14	14.00	4 : : .	80	11 1	21. 2	!		0.9	1.1	ų.	21.4	11 1		j0. 11j			103	11 1	11.4	
15	15.00		83		20. 5	l i li		0.8		-il	22.6			0.12			101		1.8	
16	16.00	$1 \cdot 1$	84	1.1	19.7	L I	L L	0.6	1.1	-11	23. 8	1 1	1	10. 13	1		1 99 1		12.21	
17	17.00	¦ ¦ľ	83		1 18.9	ΙÏ		0.5		-11	25.0			0.14			98		2.5	
18	18.00]i i 📍	 I 81	i i	I 18.6	i <mark> </mark> i	i i	0.3	i i	-i]	126. 0	i i	11	10. 15	i	i i	I 96 I	i i	12.81	
19	19.00	1!!!	1 1	11 1	1 1 1	19		1 1	1.1	_! ì	26.8	11 1	11	0, 16	1	!!!	95	1.1	1 3.0	
10	10.00	+!! ∳	1 / 31	11 1	1 110.0	1 🤞 🖞		0.2	1 1	11		11 1	11	10.171						

ケース

(5) 小見川観測波による応答解析結果(FDEL) 最大応答値深度分布図 (モデル①)

最大応答値深度分布図(モデル③) ケース

(6) 小見川観測波による応答解析結果 (FLIP)

最大応答値深度分布図 (モデル①)

最大応答値深度分布図(モデル③) ケース

最大応答値深度分布図(モデル②) ケース

「資料-3 第6回委員会の指摘事項とその対応について ⑧」の回答資料

小見川地区新開町の宅盤高の違いによる沈下への影響について

小見川地区新開町は、住金団地側の道路面と反対側の道路面の間に約70cm 程度の高低差がある。ここでは、水位低下工法による圧密沈下において、高低差の影響がどの程度であるか検証を行った。

- 1. 解析条件
- (1)解析断面

上図のとおり、平面図上のスポットエレベーションから想定すると、住金団地側の道路は平均標高約 1.7m、対する北側道路は平均標高約 1.0m と設定される。

矢印位置で以下にしめす2断面を設定した。

【断面①】宅盤高が住金団地側と概ね同じ高さで、北側道路部分で段差になっている場合

【断面②】 宅盤高が中央の用地境界で段差になっている場合。

(2) 土質条件

圧密沈下が懸念される Ac1 層の圧密沈下特性を以下に示す。

1) e-logP 曲線

2. 解析結果

解析は一次元圧密沈下解析で、水位低下工法により地下水位を 1.6m低下させた場合の沈下の状況を 解析した。解析方法は、1.6mの水位低下により増加する荷重 16kN/m2 (10kN/m3×1.6m)をAc1層 に載荷して、e-lopP 法により沈下量を計算した。

断面①、②で解析を実施した。各断面での左右の宅盤高の違いによる沈下量の差はそれぞれ 2cm 程度であった。また、断面①、②の比較で断面形状による沈下量の違いは宅地中央で 1cm 程度であった。

■参考資料

Ð

写真撮影位置図